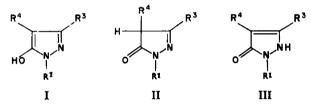
THE TAUTOMERISM OF HETEROAROMATIC COMPOUNDS WITH FIVE-MEMBERED RINGS—IV*1

1-SUBSTITUTED PYRAZOLIN-5-ONES


A. R. KATRITZKY and F. W. MAINE

University Chemical Laboratory, Cambridge and the School of Chemical Sciences, University of East Anglia, Norwich, England

(Received 16 September 1963)

Abstract—The IR, UV, and NMR spectra and pK values are discussed of six potentially tautomeric 1-phenyl and 1-methyl-pyrazolin-5-ones. These compounds exist under most conditions in non polar media in the Δ^3 -form. In aqueous solution the NH-formis in equilibrium with ca.10% of the OH-form. The effect of substituents, and the relation of the results to those for the corresponding isoxazolin-5-ones is discussed. Previous work is reviewed.

I-SUBSTITUTED pyrazolin-5-ones can exist in three tautomeric forms I, II, and III, which are denoted the OH, CH, and NH forms for brevity. A lot of attention²⁻¹⁹

has been devoted to the tautomerism of compounds of this type, but much of it is, or appeared to be, contradictory. Most of the references quoted do not make adequate

* Note added in proof, October 1963. Since submission of the manuscript of this paper, R. Jones, A. J. Ryan, S. Sternhell, and S. E. Wright (*Tetrahedron*, 19, 1497 (1963)) have published another investigation of the tautomerism of pyrazolin-5-ones. Insufficient data, and errors of interpretation, lead to the false conclusion that "no such tautomerism exists, and a single structure can be written for each compound investigated".

- ¹ Part III, A. R. Katritzky, S. Øksne, and A. J. Boulton, Tetrahedron 18, 777, (1962).
- ² L. Knorr, Ber. Disch. Chem. Ges. 28, 706, (1895).
- ^a H. Beyer and D. Stehwien, Arch. Pharm. 286, 13, (1953).
- ⁴ D. Biquard and M. P. Grammaticakis, Bull. Soc. Chim. Fr. 8, 246, (1941).
- ⁶ N. A. Valyashko and V. I. Bliznyukov, J. Gen. Chem., U.S.S.R. 11, 559, (1941); Chem. Abstr. 35, 7961 (1941).
- N. A. Valyashko and V. I. Bliznyukov, J. Gen. Chem., U.S.S.R. 11, 23, (1941) Chem. Abstr. 35, 5496, (1941).
- ⁷ G. Westöö, Acta Chem. Scand. 6, 1499, (1952).
- ⁸ P. E. Gagnon, J. L. Boivin and R. J. Paquin, Canad. J. Chem. 31, 1025, (1953).
- ^a L. A. Carpino, J. Amer. Chem. Soc. 80, 5796, (1958).
- ¹⁰ R. Janssen and H. Ruysschaert, Bull. Soc. Chim. Belg. 67, 270, (1958).
- ¹¹ G. de Stevens, A. Halamandaris, P. Wenk and L. Dorfman, J. Amer. Chem. Soc. 81, 6292, (1959).
- ¹⁸ F. A. Snaveley and F. H. Suydam, J. Org. Chem. 24, 2039, (1959).
- 18 S. Toda, Nippon Kagaku Zasshi 80, 402, (1959) Chem. Abstr. 55, 4150, (1961).
- ¹⁴ B. S. Jensen, Acta Chem. Scand. 13, 1668, (1959).
- ¹⁶ G. Westöö, Acta Chem. Scand. 13, 67, (1959).
- ¹⁴ W. Pelz, W. Püschel, H. Schellenberger and K. Löffler, Angew. Chem. 72, 967 (1960)
- ¹⁷ H. Dahn and G. Rotzler, Helv. Chim. Acta. 43, 1555, (1960).
- ¹⁸ R. M. Silverstein and J. N. Shoolery, J. Org. Chem. 25, 1355, (1960).
- ¹⁹ S. Refn, Spectrochim. Acta 17, 40, (1961).

		E	autome: Pyrazolo ibstituer	nc			Fixed	Conclusion	
Ref.	Year	R1	R ³	R ⁴	Method	Phase	Derivatives Comparison	on Tautomerism	Remarks
4.	1941	Ph Ph	Me Me	₩ Me}	UV	EıOH	СМе, NMe	CH + NH	no propor- tions given. OH not considered.
5,6.	1941	Ph	Ме		UV	{C ₆ H ₁₃ EtOH	ОМе	"all struc- tures important"	-
7.	1952	Ph	Ме	Br	UV	CHCl ₈ EtOH	СМе	OH or NH}	Comparison between effect of Br and H made.
8.	1953	Ph	Ph	R	UV pK	H2O H2O	-	} OH or NH	
9.	1958	Me)	(H)	(H)	(IR IR	nujol nujol		OH not CH	incidental
<i>.</i>	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ph)	Me Ph Br	(Me Ph)	IK	najoi	CIME	not CA	to another investigation
10.	1958	Ph	Ме	-	IR	CHCl ₃ CH ₃ CN KBr		CH CH + OH NH or OH	_
11.	1959	Me Ph Ph	CF CF (Cl	 H ₂) ₄	} IR	nujol	CR, NMe	NH	zwitterionic structure proposed.
1 2 .	1 959	Ph	Me	N ₂ A	r IR	KBr		{CH or {4=N.NHPh	no firm conclusion
13.	1959	{Ph Ph	Ме Ме	N ₂ Pl	IR n IR	nujol CHCl ₂	?	? 4—N.NHPh	-
14.	1959	Ph	Me	COR	recrysti	n ⁿ . CHCl _s etc.	-	CH or OH	both forms claimed to be isolated.
15.	1959	Ph	MeC. Cl	СОМе н.	IR	KBr		он	chelated
16.	1960	Ph	Me	Mε	IR	{KBr	_	он	
		Ph Ph	Me Me	H ∫ N:NPh		(CHCI, {KBr (CHCI,)	C-Me	сн он	chelated OH
						MeOH	CMe	он ј	<u></u>
17.	1960	Ph	Ar	N₂Ph	IK	KBr	_	СН	OH, NH band reported absent.
18.	1960	2,4- (NO ₃) —C ₆ I	Ph 93 43		{IR NMR	CHCl _a CDCl _a }	_	СН	suggests that CH always occurs.
19.	1961	(Me)	{Me	- <u>`</u>	IR	KBr	CMe, NMe, OMe	OH	
		{Ph∮ {Ph	۱Ph Me	J	p <i>K</i>	AcOH	CMe, NMe, OMe	• NH ∔ OH (1:1)	CH not considered

TABLE 1. SUMMARY OF PREVIOUS INVESTIGATIONS

reference to previous work, and in no single paper is a clear summary of the field presented. Because of the importance of pyrazolinones as pharmaceuticals and dyestuffs,²⁰ and following work in this laboratory on the related isoxazolin-5-ones^{1,21} we have now examined 1-substituted pyrazolin-5-ones. We present in this paper a brief account of previous work, the results of a fresh investigation using a combination of physical methods, and a summary of the overall position.

Previous work. Knorr realised in 1895² that isoxazolin-5-ones could give three types of derivative, corresponding to the three tautomeric forms and postulated a mobile equilibrium between them. The tautomerism has frequently been discussed intelligently without definite conclusions being reached (e.g. ref. 3). The results of previous investigations by physical methods⁴⁻¹⁹ are summarized in Table 1. The pK measurements of Veibel should also be mentioned.22-24

Preparation of compounds was carried out by the literature methods noted in the experimental section. Difficulty was encountered in the preparation of 3,4-dimethyl-5-ethoxy-1-phenylpyrazole from ethyl methylacetoacetate: the starting material contained only a small amount of the dimethyl-analogue, but the latter reacted preferentially with phenylhydrazine forming 3,4,4-trimethyl-1-phenylpyrazolin-5-one. The ethoxy-compound was finally separated using a Dowex 50 ion-exchange column.

Preparation of 1-methyl-3,4-tetramethylene pyrazolin-5-one was also attempted; however, although we obtained satisfactory analytical figures, the spectra indicated that this compound had been oxidized to the 4,4'-bis derivative. Easy oxidation of 3,4-dimethyl-1-phenylpyrazolin-5-one was reported,²⁵ but had not occurred in our case as shown particularly by the UV spectra.

IR Spectra

Fixed [1H, 2H,]-pyrazolin-5-ones. IR spectra of the three available 1,2-disubstituted pyrazolin-5-ones are summarized in Table 2. The spectra are mutually similar, and comparison with the spectra of corresponding 2H-isoxazol-5-ones^{1,21} allows tentative assignments of some of the bands (cf. Table 2). v C=O occurs at ca. 1655 cm^{-1} for chloroform solutions, and somewhat higher for measurements in carbon tetrachloride.

Fixed [1H, 4H]-pyrazolin-5-ones. The spectra of two 1,4,4-trisubstituted pyrazolin-5-ones are included in Table 3, together with a number of potentially tautomeric compounds which exist is this form. The group of spectra show large overall similarity. Tentative assignments are given for some of the bands as suggested by other work on heterocyclic compounds.²⁶ The carbonyl stretching frequency is found at 1698-1694 for the 1-methyl compounds and at 1712-1705 cm⁻¹ for the 1-phenyl analogues.

¹¹ A. J. Boulton and A. R. Katritzky, Tetrahedron 12, 41, (1961).

- 23 S. Veibel, K. Eggerson and S. C. Linholt, Acta Chem. Scand. 6, 1066, (1952).
- ⁸⁴ S. Veibel, K. Eggerson and S. C. Linholt, Acta Chem. Scand. 8, 768, (1954).
- ^{35a} S. Veibel and G. Westöö, Acta Chem. Scand. 7, 119, (1953);
- ^b G. Westöö. *Ibid.* 7, 352, (1953);
- ^e H. Shirai and T. Yashiro, Bull Nagoya City Univ. Pharm. School No. 3, 30 (1955); Chem. Abstr. 50, 16754i (1956).

²⁰ W. Krohs and O. Hensel, Pyrazolone und Dioxopyrazolidine, Editio Cantor, Anlendorf i Wuttenburg (1961).

¹¹ S. Veibel, J. Kjaer and E. Plejl, Acta Chem. Scand. 5, 1283, (1951).

]
	Substits.	tits.						C=C pvrazolin-		phenvl		pher	phenyl + pvrazolin-					ovrazolin-	volin-		
	7	3	4	Phase (Conc. M	CO CO	ي ع	one ring $cm^{-1} \epsilon_{A}$	യംഹ	ring cm ⁻¹	۳	one r cm ⁻¹	one ring $m^{-1} \epsilon_{A}$	Me cm ⁻¹	L E	? cm⁻¹	¥ ۵	CT -1	one ring $m^{-1} \epsilon_{\mathbf{A}}$	Me Cm ⁻¹	ε ^ν
hh	Me	Me	Н	CHCI,	0-2	1658	750	1595 200	500	(1499	220	1459	95	1440	60	I424	65	1400	160	1370	70
ЧЧ	Me	Me	Me	CHCI ₃	0-2	1657	350	1596	180	14/9	20 20	1458	105	1440	70	1426	1426 80	1412	90	(1386	
Me	Me	Me	Н	cci	sat.	1667	S	1587	E	I		1465	8	1443	В	I	ı	1406	s	1360	8 E
				pyrazolinone ring and methyl deformation modes	ne ring a	ind meth	ıyl defi	ormati	i i i i i i i i i i i i i i i i i i i	des				pheny	phenyl <i>β</i> CH			e.	e.		 e·
cm ⁻¹	ε	cm ⁻¹	εA	cm ⁻¹	£ Å	cm ⁻¹	υ	€_A cm ^{−1}	۶	cm ⁻¹	د ۲		[5] [⊾¶	1 ⁻¹ EA	cm ⁻¹	ر س	- E	$\varepsilon_{\rm A}$ cm ⁻¹ $\varepsilon_{\rm A}$ cm ⁻¹ $\varepsilon_{\rm A}$ cm ⁻¹ $\varepsilon_{\rm A}$ cm ⁻¹	n -1 &	cm ⁻¹	e,
1339	125	1311	100		G	(1175 (1169	30	1139	90	1103	25	1082 2	20 10	155 20	20 1055 20 1031 15 1004 5	15	1004	s و	983 10) 855	50
1344 	8	1315	8 5 80 8	0 (1270 v 1271	-	1171* 1200	Я Е •	1146	105	1110	57 E	1082 1095	ы 10 10 10	071 2: 	1071 25 1021 — 1035	15 W	1003	3	950 25 	5 911 839	¥ 15

TABLE 2. IR SPECTRA OF [1H, 2H] PYRAZOLIN-5-ONES

A. R. KATRITZKY and F. W. MAINE

			1																			
-	Substits. 3	4.4	Phase	Conc. M	01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ĘÅ	C E C	ęγ	cm ⁻¹ _{sA}	×,	E. B.	4		1 °4	3-We	3		$\begin{array}{c} CH \ def \ modes \\ cm^{-1} \varepsilon_{A} cm^{-1} \end{array}$	nodes cm ⁻¹	٩,	HA'N SHI	۶,
Me	Me	Mcz	CHCI	0.2	1695	390	1610	35	۲			•	1471	6	1434	105	(1397	8	1384	8	•	
Mc	Mc	н	CHCI	0.02	1694	430	1605	55	<			<	1472	30	1434	40	1407	84	(1389 (1376	2 4 0	<	
Mc	Ph	H ₃	CHCI	sat.	1698	හ	1601	E	I		1452	3	•	1	I		1402	¥	1380	8	<	
ቲ	Mc	Mea	снсі	0.2	1705	390	1620	45	1598	165	{1503 [1490*	230 150	1465	85	1434	65	1400	105	1386	100	1365	320
μ	Me	H	CHCI3	0.2	1706	430	1616*	45	(1597 (1566	<u>8</u> 4	{1502 {1485*	350	1461	40	1437	S	1405	20	1		1364	390
ЧЧ	Me	Me,H'	Me,H ^a CHCI _s	0.2	1710	420	1625*	10	1602	190	(1507 (1496*	330	1465	99	1438	75	6661	105	1		{[1372 [1333	350
Ч	£	Ч	CHCI	0.02	1707	360	Ĵ	~	{1598 {1564	8 ²	1494 1480*	140	1451	55	I		1399	85	1378	110	1328	215
Ph	-(CH ₂) ₄ 4	ا	CHCI	0.02	1712	360	1630*	30	1603	230	1494	8	1453	20	1		I		1386	125	1339	130
		Г. В	¢.,	¥,	cm ⁻¹ ?	۶,	Pyrazz CCB ⁻¹	pyrazolinone ring cm ⁻¹ ^e A	ring ^s	Phenyl &-CH cm ⁻¹ *A		cm ⁻¹	, v	pyrazc M ⁻¹	pyrazolinone ring cm ⁻¹ eA cm	cm ⁻¹	٤4	۳- ۳	۶4			
		1317		45	1155	\$	1054	4	9		~	<		1017	15	962	35	925	15	1		
		1326		100	1132	25	1097	5	35		×	<		1015	35	962	99	06	10			
		1350		E	I		1102	0	3	1076	\$	1042	м	Ι	-	l		918	E			
		1309		250	{!!?4 {!!59	45 145	1601)	• •	22 25	1060	20	1026	13	866	33	955	20	(801 (871	82	.		
		1319		270	{1193 {1168	35	{1110 {1097	0r	65 45	1064	10	1028	25	866	20	955	15	006	45			
		1297		135	{[150	80 <u>1</u>	{1120 {1089	00	70 75	1063	35	1025	30	1003	30	951	۳	908	4	-		
		{1306* {1290		70 35	1160	9	{[1118 [1100	80	96 02	1067	52	1029	20	1017	50	952	13	2088 2088	85			
		1316		120	1146	80	{1118 {1085	89 YA	6 6 0 8	1056	70	1		1016	90	I		905	5			

ALL ALL

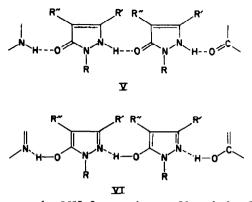
, e F The tautomerism of heteroaromatic compounds with five-membered rings-IV

^a Spectra of solutions which have stood for one week

1-Substituted 5-alkoxypyrazoles. IR bands of the 5-alkoxypyrazoles are recorded in Table 4. Little is known of the IR spectra of pyrazoles (for ref. see 26); tentative assignments for some of the bands follow from literature data.²⁶ For the determination of tautomeric structure it is important that strong absorption does not occur above 1600 cm⁻¹.

IR spectra of tautomeric pyrazolin-5-ones. The spectra are included in the Tables according to the tautomeric form in which the compounds exist.

Pyrazolin-5-ones in which the 4-position is unsubstituted exist in the CH form (IV) in chloroform solution both for the 1-phenyl series (IV, R = Ph, R' = Me, Ph) and the 1-methyl series (IV, R = Me, R' = Me, Ph). 1,3-Dimethyl-, and 3-methyl-1-phenyl-pyrazolin-5-one were also examined in carbon tetrachloride: the spectra (not reported) are very similar to those in chloroform solution and demonstrate the CH-form: the ν C=O showed hypsochromic shifts of 20 and 14 cm⁻¹ to 1714 and 1720 cm⁻¹ respectively. Such a shift is expected because hydrogen bonding with the solvent occurs in chloroform but not in carbon tetrachloride solution.


The solution spectra for 4-substituted pyrazolin-5-ones are generally more complicated. The spectrum of a chloroform (or carbon tetrachloride) solution of 3,4-dimethyl-1-phenylpyrazolin-5-one which has stood for several days shows a striking similarity to those of the 3-monomethyl- and 3,4,4-trimethyl-analogues (Fig. 1 and Table 3). However, freshly prepared solutions in chloroform, carbon tetrachloride, bromoform, and tetrachloroethylene, while similar among themselves, are markedly different to the above mentioned spectra: e.g. strong bands occur at ca. 1630 and 1316 cm⁻¹ and the relative intensity at 1462 and 952 cm⁻¹ is much increased (cf. Fig. 2). Apparent extinction coefficients indicate that only approximately 50% of the compound in the freshly prepared solution exists in the CH-form. The remainder is probably present in the NH-form: although ν C=O for the fixed 2H-pyrazolin-5-ones occurs at 1655 cm⁻¹, intermolecular hydrogen-bonding in the NH-derivatives might well cause a shift of ca. 20 cm⁻¹.

3,4-Tetramethylene-1-phenylpyrazolin-5-one shows very similar behaviour to the 3,4-dimethyl analogue. It is of interest that in the isoxazolin-5-one series, the 4-methyl-3-phenyl derivative exists as ca.40:60 CH:NH in freshly made up chloroform solution, and that this composition changes on standing to ca. 70:30 CH:NH.²¹

The solid state IR spectra of the tautomeric compounds show mutual similarity (Table 5). The CH-form is easily eliminated by the absence of a normal carbonyl band and evidence of strong hydrogen bonding, but differentiation between the OH and NH form is less simple. Indeed, strong hydrogen bonding blurs the distinction

³⁶ A. R. Katritzky and A. P. Ambler in *Physical Methods in Heterocyclic Chemistry* Vol. II (edited by A. R. Katritzky) Academic Press, New York (1963).

	۲ ۲	175 180 150	×	25	50	17
	OEt cm⁻¹ é	1398 1392 1391	OEt? cm ⁻¹	915	904	(903 168
			E	5	6	<u>6</u> 8
	י נ	2	54		15	20
	cm ⁻¹	1425	cm ⁻¹		975	957
	чз Ч	130	¥3	55	55	30
	Ph cm ⁻¹	A 1440 1439	۰.			
) ▼ 3	65 130 65	cm ⁻¹	1010	1008	1006*
	Ring		h A	95	160 85	75
LES	ε E	1453 1452 1457*	OEt & Ph cm ⁻¹ _E	1048	1048	1026
(RAZO	3t &A	75 110 85	05	1	2.5	-
IOXYP	oEt cm ¹	1486 1474 1491	۲ ۲	25	35 35	20
F S-ETF	₹.	310 310	OEt cm ⁻¹	1092	(1087 (1069	1071
TABLE 4. IR SPECTRA OF 5-ETHOXYPYRAZOLES	Ring cm ⁻¹ 6	1527 1510 1509	£Å	30	4	6
R spe	50 ₹₹	340 35 35	? cm ⁻¹	1111	1106	1100
. Е. Ч. I	Ring cm ⁻¹	1562 1560 1564	EA CI			75 11
Tabi	¥٩.	180		I	2 120	
	а	<	cm ⁻¹		1142	1137
	. Pl	1591	54 (9 5 5	5 5 5	
	Conc. M	9 9 9 0 0 0	с Ц	1198 1165	1174* 1166	١
	Phase	CHCI, CHCI, CCI,	5	<u>_</u>	17	
	A		ته تت	65	4	52
	Ŷ	OEF OEF	un OEt	1277	1263	1282
	Substits. 3 4	Янн	€▲ cm ⁻¹	45 1277	80 1263 25	90
	Sul 3	Me Me	~	1369	(1360 (1311	
ļ	-	እ ደ ደ	cm ⁻¹	13	EI)	13

between the two forms: the NH form exists as V and the OH as VI. Proton transfer may well occur in the crystal rendering these two designations equivalent. A similar conclusion for the solid state spectra of pyrazolinones has been reached by Refn¹⁹ (cf. Table 1).

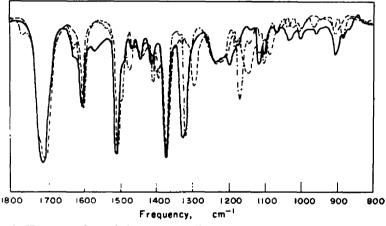


FIG. 1. IR spectra of 3-methyl- —, 3,4-dimethyl- – – – –, and 3,4,4-trimethyl-1-phenylpyrazolin-5-one ------ All spectra are of 0.2 M chloroform solutions and that of the 3,4-dimethyl compound was measured after standing for 1 week.

UV spectra (Table 6)

1-Phenyl series. In cyclohexane (Fig. 3a), the 3-methyl- and 3,4-dimethyl-compounds spectrally resemble the 3,4,4-trimethyl analogue, showing that they exist predominantly in the CH form. The shoulders on the high wavelength side of the curves suggest ca. 1% and 10% of the NH form respectively. It is less easy to assess the amount of OH form, but this is probably very small. The 3,4-tetramethylene derivative resembles the 3,4-dimethyl analogue. No conclusion can be drawn as to the structure of the 3-phenyl-compounds as no methyl derivatives are available for comparison.

In aqueous buffers, the UV spectra of the 3-methyl and 3,4-dimethyl compounds (Fig. 3b) are intermediate between those of the fixed N-Me and O-Et derivatives, indicating probably mainly NH with some OH but little CH form. The spectrum of the 3,4-tetramethylene derivative is identical with that of the 3,4-dimethyl analogue.

Substits.		Dhate	ę	-	NH/OH bonded	f bond	led																
3	4			cm-1	εv	5	cm ⁻¹	a	- CU	εv	ц СШ	۳ ۲	cm ⁻¹	٤Å	cm ⁻¹	¥ د	ц СШ	εv	cm ⁻¹		٤ ^م	cm 1	£^
1 2 4	Mc Me H Nuj	n n n		1. 2500	<u>۽</u> ڊ	33	1800	<u>۽</u> ڊ	I		1568		1550	~ ~ ~ ~	1 0151		1450	٤ 8	4	1426 r	8 8	5	£
2	5	Z	5	MC7 .1	0	3	3001	2				0	1661	۵	0101	0		1	1		8	7001	1
Me	H	ž	uj ^a ca.	ı. 2500	ď	ся.	1800	٨þ	1606	Ś	1585	E	1525	s	1503	s	1460	E		I		(1392	8
																						1346	E 8
ፈ	Η	Ŋ		ca. 2500	٩	ซ่	ca. 1800	٩	1595	s	1555	s	1516	s	1497	3	1450	ŝ		Ι		[1380	ø
;	2	;		0000	-		0.0	-	2021										:			[134]	\$
Ř	Me	ź;		ca. 2800	<u>ę</u> .	ซ่	ca. 1950	<u></u>		s	5661	Ś	2		56	ŝ	1404		4		<i>.</i>	136/	0
5	н _{0,} -	Ž	ы В	1. 2800	Ŷ	8	00661	٩ ۲	CIOI	ŝ	0801	s	I		14/1	Ś	14501	Ś	4	140/ \$	s	2011	E
																		÷			l	1161)	E
43	cm ⁻¹ ε <u>k</u> cm ⁻¹ ε _k cm ⁻¹	5 ¥3	l "	€A CT	cm⁻¹ ɛ	€A CT	cm ⁻¹	€A CN	cm ⁻¹ ɛ,	€A CI	cm ¹ e _A		cm ⁻¹ ɛA		cm ⁻¹ é _A	cm.1	1 F∆	cm 1	٤A	сш ¹	£	cm ⁻¹	£∆
so .			1186	E			1		1034 n	sm	973 w	>	1		I	830	w 0	ł	ı	740	Ś	(685	E
E	1205 m		1173	5	1107	Т	1042	н Т	1031 v	3	965 n	5 E	910	3	[60	830 w	774	E	740	\$	(683	3 8
																						(675	E
E	1201		(1165	E	I	Ċ	1075	<u>с</u> .: а:	1029 n	8 3	I	57	918 n	т 28	897 w	846	≷ ç	808 11	s i	767	Ε.	§ §	3.
≥ E	1203 w	-	1182			E E		:=; * *	1030 w		960 m		913 v	3	1		I	776	8 8	754	n v	687	n vn
ł		;		=-	1118	-	013	<u> </u>	1020 w					ă	803 m	103	8	776		740		680	v
E	W 4171	≩		-		T					954 m		ł	0					0	£	n	200	o
33	I		1183	»	1167	- > >	1052	3	I		952 w		917 r	ε ε	852 w	817	4 K 2 K	776	Ś	727	E	696	E

TABLE 5. SOLID STATE SPECTRA OF TAUTOMERIC PYRAZOLONES

" KBr disc similar spectra

307

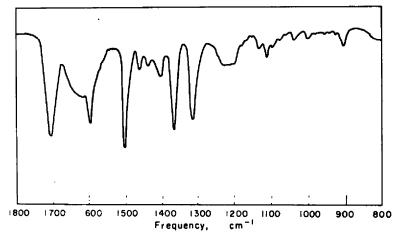


FIG. 2. IR spectra of a freshly made up 0.2 M solution of 3,4-dimethyl-1-phenylpyrazolin-5-one in chloroform.

For the fixed compounds, there are pronounced bathochromic shifts for aqueous \rightarrow cyclohexane solutions, but the shape of the curve remains the same. This is not so for the tautomeric compounds, and this affords further evidence for a change in tautomeric form from predominantly $CH \rightarrow NH$. In dioxan and ethanol intermediate behaviour is shown as illustrated in Fig. 4.

The spectra in 10N sulphuric acid (Fig. 3c) show that cations of type VII are formed where possible: all the spectra similar except for the 3,4-trimethyl compound which cannot form such a cation.

	Su	bstitue	ents		Cyclo	hexane		ffer	Sulp ac	huric id		Sodium Iroxide
1	2	3	4	5	λ_{max}	3	λmax	3	λmax	3	λ_{\max}	8
Мс	Мс	Mc			257-5	9,310	246-5	9,570	227·5*	8,800		
Me		Me	Me _s		250	4,310	248	3.670	260·5°	3,930		_
Me		Me	-	OEt		a		a	2248	7,800		<u> </u>
Me		Me			251	4,040	241	7,970	222·5°	7,860	233	6,460
Me		Ph			301	12,190	255	16,170	255 ^b	20,020	252	17,250
Ph	Me	Me			239	10,020	241	9,100		-		•
					280	9,440	253	8,690	230 ^d	12,790		_
Ph	Me	Me	Me		241	10,580	246	8,910		•		
					278	10,080	265	8,980	236ª	10,460		
Ph		Mc	Mc ₂		246	19,070	235	12,550	223·5°	10,400		_
Ph		Me	-	OEt	252	19,360	233-5	12,790	233-54	15,320		
Ph		Me	Me	OEt	259	16,370	249	11,030	238-5	13,030		_
Ph		Ме			245	18,050	239	12,380	231ª	15,920	246	11,710
Ph		Me	Me		246	16,120	244	13,310	238ª	14,420	250	12,430
Ph		-(C	H_),		247	20,580	246	13,260	2394	13,920	252	13,260
Ph		Ph			263	17,850	265.5	20,680	266 ^d	22,400	261	21,070

TABLE 6. UV ABSORPTION MAXIMA

* 20N—sulphuric acid

^d 10N-sulphuric acid

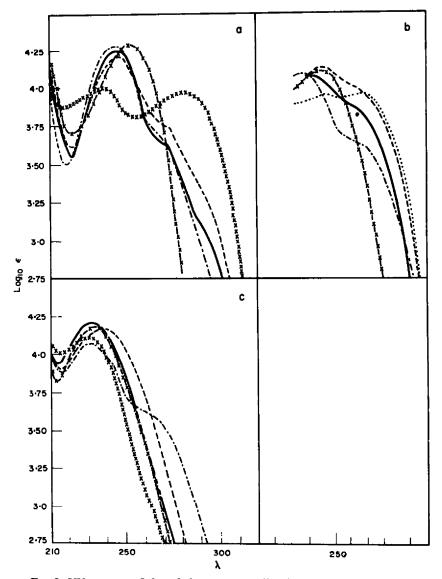


FIG. 3. UV spectra of 3-methyl-..., 3,4-dimethyl-..., 3,4-dimethyl-..., 3,4,4-trimethyl--.., and 2,3-dimethyl-1-phenylpyrazolin-5-one $\times \times \times \times \times$, and 5-ethoxy-3methyl-1-phenylpyrazole $-\times -\times -\times -\times ,$ 2,3,4-trimethyl-1-phenyl-pyrazolin-5-one

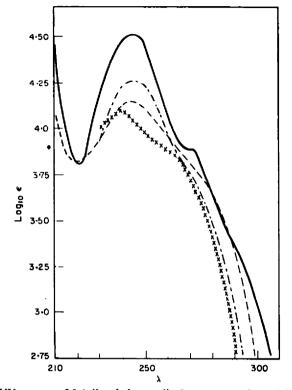
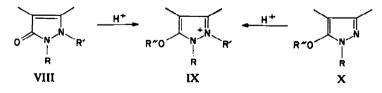



FIG. 4. UV spectra of 3,4-dimethylpyrazolin-5-one, —— in cyclohexane, —— in dioxan, ---- in ethanol, $\times \times \times \times \times \times$ in aqueous buffer.

1-Methyl series. The results are essentially similar to those in the 1-phenyl series. In cyclohexane (Fig. 5a), the 3-methyl derivative exists in the CH form as its spectrum is similar to the 3,4,4-trimethyl analogue, and not to the other "fixed" derivatives. The curves for the aqueous solutions (Fig. 5b) indicate that in this series also a tautomeric shift to predominantly the NH-form occurs. In sulphuric acid, cations of type VIII are again formed where possible (cf. Fig. 5c).

pK measurements

An estimate of the tautomeric equilibrium between 2H-pyrazolin-5-ones of type VIII and 5-hydroxypyrazoles of type X can be obtained²⁷ from pK data, as a common mesomeric cation of type IX is formed from both.* Values in Table 7 show that, in both the 1-methyl and 1-phenyl series, the NH form predominates by a factor of ca. 10,

* Basicity data cannot give information about the proportion of the CH-form present, as this cannot form a similar cation by simple proton addition.

¹⁷ A. R. Katritzky and J. M. Lagowski in Advances in Heterocyclic Chemistry 1, (1963).

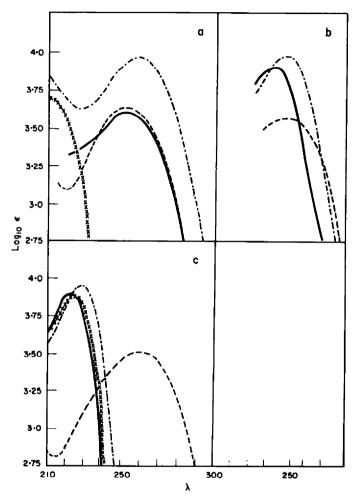


FIG. 5. UV spectra of 1,3-dimethyl-----, 1,3,4,4-tetramethyl-----, and 1,2,3-trimethyl-pyrazolin-5-one -----, and 5-ethoxy-1,3-dimethylpyrazole $\times \times \times \times$. (a) In cyclohexane, (b) in aqueous buffer pH 5, and (c) in 20N sulphuric acid.

TABLE 7	7.	pKa	VALUE	ŝ
---------	----	-----	-------	---

		Substituents	5			
1	2	3	4	5	pKa as base ^a	p <i>K_a</i> (proton loss)
Ме		Ме	Meg		-3.79 ± 0.10	
Me	Me	Me		_	$+2.22 \pm 0.03$	-
Me		Ме		OEt	+3·51 ± 0·03	_
Me	_	Ме		_	$+2.35 \pm 0.03$	7·94 :± 0·03
Ph		Me	Me ₂	_	-4.02 ± 0.08	_
Ph	Me	Ме	_	_	$+1.40 \pm 0.02$	_
Ph	Me	Me	Me		$+1.24 \pm 0.02$	
Ph	_	Me	_	OEt	$+2.34 \pm 0.03$	
Ph	_	Me	Ме	OEt	$+2.55 \pm 0.06$	
Ph	_	Ме		_	$+1.42 \pm 0.05$	7.17 ± 0.03
Ph		Ме	Me	_	$+1.39 \pm 0.05$	7.38 ± 0.13

^a Thermodynamic constants. For full details see F. Maine, Thesis, Cambridge, 1963

as the 2-methylpyrazol-5-ones are weaker bases by ca. 1 pK unit than the 5-ethoxypyrazoles. The 4,4-disubstituted pyrazolinones are much weaker bases. Literature pK data have been interpreted as favouring more of the OH form (OH:NH or 1:1) in acetic acid solution.¹⁹

In all cases, substitution of a 1-phenyl for a 1-methyl group is base weakening (by 0.3 to 1.0 pK unit). Compounds in the isoxazole series²¹ are much weaker bases than their analogues of the pyrazole series.

Proton resonance spectra

Proton resonance spectra for 5-ethoxypyrazoles are given in Table 8. Assignment is straightforward, and τ and J values are in the expected ranges. The same applies to the fixed pyrazolinones of the 2H- (Table 9) and 4H-series (Table 10). Direct comparison shows clearly that the four potentially tautomeric compounds with no substituent in the 4-position all exist predominantly in the CH-form in chloroform solution (Table 10).

	1-Pe	osition	3-Po:	sition	4-Po	sition		5-Positi	ion
Phase	subst.	τ	subst.	τ	subst.	τ	subst.	τ	(multiplicity)
 Liquid	Me	6.54	Me	7.91	н	4.78	∫ OCH ₂	6.08	(4, J = 7 c/s)
-								6∙08 8∙72	(3, J = 7 c/s)
CHCl ₃	Ph	2·1-3·0ª	Me	7.74	Н	4.20	(OCH ₂	5.86	(4, J = 7 c/s)
								8-59	(3, J = 7 c/s)
CCl	Ph	2·1-3·0ª	Me	7.90	Me	8-13		6.12	(4, J = 7 c/s)
								8.82	(3, J = 7 c/s)

TABLE 8. NMR SPECTRA (τ) OF 5-ETHOXYPYRAZOLES

^a Complex peak.

TABLE 9. NMR SPECTRA (τ) of (1H, 2H) pyrazolin-5-ones

	1- P	osition	2-Po	sition	3-Po	sition	4-Po	sition
Phase	subst.	au	subst.	τ	subst.	τ	subst.	τ
Liquid	Me	6.71	Me	6.79	Me	7.87	н	4.91
CHCI:	Ph	2.70	Me	6.97	Me	7·80°	H	4.63
CHCI,	Ph	2·4-3·0°	Me	7.04	Me	7.85	Ме	8.15

^a Complex peak

* Spin-spin coupling occurs ca. 1 c/s

TABLE 10. NMR SPECTRA (τ) OF (1H, 4H) PYRAZOLIN-5-ONES

	1-Pe	osition	3-Pos	ition	4-Posi	tion
Phase	subst.	Ŧ	subst.	τ	subst.	Ŧ
Liquid	Ме	6-86	Me	8.04	Me, Me	8.88
CHCI,	Ph	1.9-2.6ª	Ме	7-93	Me, Me	8.72
CHCi,	Me	6.72	Me	7.91	н,	6-82
CHCl,	Ph	1 ·9–2·6 ª	Me	7.84	H,	6.60
CHCI:	Me	6.29	Ph ca	2.7	H,	6.40
CHCl,	Ph	1·9-2·6ª	Ph	1·9-2·6ª	H,	6.25

^a Complex peak

CONCLUSIONS

The results are summarized in Table 11. There is good agreement between the results obtained by different methods and the whole forms a logical pattern. Pyrazolin-5-ones exist in non-polar media essentially in the CH- (i.e. 4H-) form, although, in some cases, solutions freshly prepared from the solid contain large quantities of the NH-form. In aqueous solution, little of the CH-form is present, and the compounds exist essentially in the NH-form, with ca. 10% of the OH-form in equilibrium. The solids all consist of the strongly hydrogen bonded NH-form, in which proton transfer (to give the OH-form) probably takes place.

s	bstitue		C ₆ H ₁₂	CCl	CH	ICl ³		H ₂ O	Solid
1	3	4		IR	NMR	IR	pK	UV	IR
Ме	Me	н	СН	СН	СН	СН	90NH +- 10.OH	Mainly NH	OH/NH
Mc	Ph	н	→		СН	СН	_		OH/NH
Ph	Me	н	СН	СН	СН	СН	90NH +- 10.OH	$\mathbf{NH} \rightarrow \mathbf{some} \mathbf{OH}$	OH/NH
Ph	Ph	н		 50CH +	СН	СН 50СН +	<u> </u>	-	OH/NH
			90CH +	50NH		50NH	90NH +		
Ph	Me	Me	10NH	\rightarrow CH		→ CH 50CH +	10.OH	NH + some OH	OH/NH
			90CH +			50NH			
Ph	—(C	H2)4-	IONH	-		\rightarrow CH		NH + some OH	OH/NH

TABLE 11. TAUTOMERIC COMPOSITION OF PYRAZOLIN-5-ONES

The change-over in tautomeric form, from non-polar to polar media, is readily understood: the NH-forms are themselves much more polar and polarizable than the CH-form and the former will be favoured in media of high dielectric constant and hydrogen bonding ability. The OH-form appears to predominate only in special cases—e.g. where chelation can occur, as with 4-phenylazo-compounds (Pelz *et al.*¹⁶).

Comparison of this overall picture with the corresponding isoxazolin-5-ones^{1,21} reveals a large similarity, but the effect of a substituent in the 4-position is less in the present series: isoxazolin-5-ones unsubstituted in the 4-position occur in the CH-form in the solid state, and the CH-form there predominates even in aqueous solution.

EXPERIMENTAL

Preparation of compounds

1-Methyl series. 1,3-Dimethyl-,³⁸ m.p. 122–123^{.5} (from ether, then sublimed) (lit.,³⁸ m.p. 117,³⁹ 106–109,³⁰ 100–105°; 1,2,3,-trimethyl-,³¹ b.p. 104–105°/0^{.4} mm, (hydrate m.p. 39–41°) (lit.,³¹ b.p. 310°, hydrate m.p. 40°); 1,3,4,4-tetramethyl b.p. 76^{.5}°/10 mm (lit.,³² b.p. 71–72°/24 mm.) (Found: C, 59^{.6}; H, 8^{.8} Calc. for C₇H₁₈N₉O: C, 60^{.0}; H, 8^{.6}%); 1-methyl-3-phenyl-pyrazolin-5-one,³⁴ m.p. 213–217^{.5}° (from ethanol) (lit.,³⁴ m.p. 206°) and 1,3-dimethyl-5-ethoxypyrazole,³⁸ b.p. 80°/15 mm b.p. (lit.,

- ^{a0} L. Wolff. Ber. Dtsch. Chem. Res. 41, 555, (1908).
- ⁸¹ A. Michaelis, Ber. Dtsch. Chem. Res. 43, 2109, (1910).
- ³⁹ N. P. Bogunets and V. I. Bliznyukov, Trudy Khar'kov Politekh Inst. im V. I. Lenina 26 Ser. Khim.-Teknol. No. 6, 207-209, (1959): Chem. Abstr. 55, 15466^h (1961).

⁵⁸ V. Auwers, J. Prakt. Chem. (2), 110, 182, (1925).

²⁹ L. Knorr, Liebig's Ann., 279, 236, (1894).

88-89°/10 mm) (Found: C, 60.2; H, 8.8; Calculated for $C_7H_{12}N_2O$; C, 60.0; H, 8.63). were made by the literature methods indicated.

1-Phenyl series. 3-Methyl-,⁸⁸ m.p. 131-133° (from water) (lit.,⁸⁴ m.p. 126°); 2,3-dimethyl- (L. Light and Co.), m.p. 113-116° (from toluene) (lit.,⁸⁴ m.p. 113°); 3,4-dimethyl-⁸⁶ m.p. 123-124·5° (from ethanol) (lit.,⁸⁴ m.p. 120°); 3,4,4-trimethyl-,³⁴ m.p. 56-59° (from 60-80° pet ether) (lit.,⁸⁴ m.p. 55°); 2,3,4-trimethyl-,⁸⁴ m.p. 80°5-82·5 (from ether-pet ether) (lit.,⁸⁴ m.p. 82°); 3,4-tetramethylene-,⁸⁶ m.p. 181·5-183·5 (from ethanol (lit.,⁸⁴ m.p. 165°) (Found: C, 72·45; H, 6·8; N, 13·4. Calc. for C₁₈H₁₄N₈O: C, 72·9; H, 6·6; N, 13·1%); and 1,3-diphenyl-pyrazolin-5-one,⁸⁸ m.p. 137·5-139·5° (lit.,⁸⁷ m.p. 137°) were made by the literature methods indicated.

5-Ethoxy-3-methyl-1-phenylpyrazole⁸⁸ had m.p. 37–39° (from pet ether) (lit.,⁸⁸ m.p. 38·5). The 3,4-dimethyl anologue⁸⁹ prepared from ethyl methylacetoacetate and phenylhydrazine was grossly contaminated with 3,4,4-trimethyl-1-phenylpyrazolin-5-one. The mixture (4 g) was placed on a Dowex 50 column (200 g) and the pyrazolinone washed off with water. After washing with dil. HCl, ethanol then eluted the ethoxy-compound. Molecular distillation gave product of b.p. 73°C/2 mm, yield 0.5 g, 12% yield. (Found: C, 72·07; H, 7·82; N, 12·50. Calc. for C₁₃H₁₆N₂O: C, 72·19; H, 7·46; N, 12·96%).

88 L. Knorr, Ber. Dtsch. Chem. Res. 16, 2597, (1883).

- ²⁴ L. Knorr, Liebig's Ann. 238, 160, (1887).
- ⁸⁵ L. Knorr, Ber. Dtsch. Chem. Res. 17, 2050, (1884).
- ³⁶ W. Dieckmann, Liebigs Ann. 317, 102, (1901).
- 87 L. Knorr, Ber. Dtsch. Chem. Res. 20, 2546, (1887).
- ⁸⁸ P. C. Freer, J. Prakt. Chem. (2) 47, 246, (1893).
- ³⁹ Fr. Stolz, J. Prakt. Chem. (2) 55, 159, (1897).